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Ocean color chlorophyll algorithms for SeaWiFS 

John E. O’Reilly,’ Stephane Maritorena, * B. Greg Mitchell,3 David A. Siegel,4 

Kendall L. Carder,5 Sara A. Garver,6 Mati Kahru,3 and Charles McClain7 

Abstract. A large data set containing coincident in situ chlorophyll and remote sensing 
reflectance measurements was used to evaluate the accuracy, precision, and suitability of a 
wide variety of ocean color chlorophyll algorithms for use by SeaWiFS (Sea-viewing Wide 
Field-of-view Sensor). The radiance-chlorophyll data were assembled from various sources 
during the SeaWiFS Bio-optical Algorithm Mini-Workshop (SeaBAM) and is composed of 
919 stations encompassing chlorophyll concentrations between 0.019 and 32.79 pg L-l. 
Most of the observations are from Case I nonpolar waters, and -20 observations are from 
more turbid coastal waters. A variety of statistical and graphical criteria were used to 
evaluate the performances of 2 semianalytic and 15 empirical chlorophyll/pigment 
algorithms subjected to the SeaBAM data. The empirical algorithms generally performed 
better than the semianalytic. Cubic polynomial formulations were generally superior to 
other kinds of equations. Empirical algorithms with increasing complexity (number of 
coefficients and wavebands), were calibrated to the SeaBAM data, and evaluated to 
illustrate the relative merits of different formulations. The ocean chlorophyll 2 algorithm 
(OC2), a modified cubic polynomial (MCP) function which uses Rrs490iRrs555, well 
simulates the sigmoidal pattern evident between log-transformed radiance ratios and 
chlorophyll, and has been chosen as the at-launch SeaWiFS operational chlorophyll a 
algorithm. Improved performance was obtained using the ocean chlorophyll 4 algorithm 
(OC4), a four-band (443, 490, 510, 555 nm), maximum band ratio formulation. This 
maximum band ratio (MBR) is a new approach in empirical ocean color algorithms and 
has the potential advantage of maintaining the highest possible satellite sensor 
signal : noise ratio over a 3-orders-of-magnitude range in chlorophyll concentration. 

1. Introduction 

The influence of phytoplankton on the color of seawater has 
been studied for several decades. It is well understood that 
chlorophyll a, the primary photosynthetic pigment in phyto- 
plankton, absorbs relatively more blue and red light than 
green, and the spectrum of backscattered sunlight or color of 
ocean water progressively shifts from deep blue to green as the 
concentration of phytoplankton increases [e.g., Yentsch, 19601. 
Following successful high-altitude aircraft studies relating 
ocean color to chlorophyll concentration [Clark et aZ., 1970; 
Hovis, 19811, satellite ocean color research began in the late 
1970s with the coastal zone color scanner (CZCS) aboard the 
Nimbus 7 satellite which acquired data from October 1978 to 
June 1986 [Evans and Gordon, 1994; Acker, 19941. Because 
phytoplankton are the major contributor to ocean color in 
offshore water, the passive remote measurements of the CZCS 
over the oceans were successfully used to quantify in situ phy- 
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toplankton chlorophyll concentrations. The CZCS ocean color 
data profoundly enriched our understanding of the global dis- 
tribution of phytoplankton by providing a synoptic, spatially 
and temporally cohesive picture of phytoplankton biomass 
variability only partially resolved by previous shipboard sam- 
pling [Yoder et al., 1988; Feldman et al., 1989; Aiken et al., 1992; 
McClain, 1993; Yoder et al., 1993; Mitchell, 19941. Moreover, 
combining CZCS data with shipboard data and other satellite 
measurements, such as sea surface temperature from the ad- 
vanced very high resolution radiometer (AVHRR), provided 
insights into linkages between physical and biological oceano- 
graphic properties [e.g., Sathyendranath et al., 1991; Denman 
and Abbott, 19941 and permitted satellite-based estimates of 
regional and global phytoplankton primary production [e.g., 
Smith et al., 1982; Campbell and O’Reilly, 1988; Platt et al., 1991; 
Longhurst et al., 1995; Antoine et al., 1996; Behrenfeld and 
Falkowski, 19971. Satellite ocean color data provide the only 
practical means for monitoring the spatial and seasonal varia- 
tions of near-surface phytoplankton, information essential for 
the study of oceanic primary production, global carbon and 
other biogeochemical cycles, as well as fisheries research. 

More than a decade after the end of the pioneer CZCS 
mission, a new generation of ocean color sensors is emerging 
(Table 1). These new sensors have more wave bands and 
higher precision and are designed to avoid some of the limi- 
tations of the CZCS [Hooker et al., 19931. Along with improved 
sensors, improvements in bio-optical algorithms are required 
for making accurate estimates of chlorophyll a from satellite 
radiance data. Such improvements are expected to enhance the 
accuracy of global ocean phytoplankton biomass assessments. 

Since the 197Os, a variety of bio-optical algorithms have been 
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Table 1. Center Wave Bands for Historical and 
Contemporary Ocean Color Sensors (400-700 nm Range) 

Band, 
nm CZCS SeaWiFS OCTS POLDER MODIS MERIS 

412 1 1 8 1 
443 1 2 2 1 9 2 
490 3 3 2 10 3 
510 4 4 
520 2 4 
530 11 
550 3 12 
555 5 
560 5 
565 5 3 
620 6 
665 6 13 7 
670 4 6 
678 14 
682 8 

See notation section for acronym definitions. 

developed to estimate chlorophyll a (C) or chlorophyll a + 
phaeopigments ([C + P]) concentration from ocean radiance 
data. Most of these are empirical equations derived by statis- 
tical regression of radiance versus chlorophyll. Advances in 
various theoretical studies and new parameterizations of some 
optical properties have yielded better knowledge of the marine 
light field and have provided new tools for modeling ocean 
color [e.g., Gordon et al., 1988; Morel, 1988; Sathyendranath et 
al., 1989; Bricaud et al., 19951. The emergence and develop- 
ment of semianalytic (or semiempirical) ocean color algo- 
rithms largely result from these improvements in understand- 
ing the relationship between remote sensing reflectance (Rrs) 
and backscattering to absorption ratio [Morel and Prieur, 1977; 
Carder et al., 19861. Semianalytic algorithms use analytical, 
optical, Rrs models that can be inverted to derive chlorophyll, 
absorption coefficients of other optically active components in 
the water, such as gelbstoff, or the backscattering coefficient 
b,. Empiricism is involved in the parameterization of several 
terms used in these models (e.g., backscattering, chl a-specific 
absorption coefficient, spectral shapes of detrital absorption). 
This admixture of theory and empiricism is the reason the term 
semianalytic has been applied [e.g., Gordon and Morel, 19831 to 
describe such algorithms. 

Despite these advances, the development and evaluation of 
the accuracy and precision of ocean color chlorophyll algo- 
rithms has been impeded by the limited number and geo- 
graphic distribution of simultaneous in situ radiance and chlo- 
rophyll data and the even smaller number of in situ 
measurements coincident with satellite data [Gordon et al., 
1983; Balch et al., 19921. For example, the empirical algorithm, 
widely applied in the processing of the global CZCS data set 
[Gordon et al., 1983; Feldman et al., 1989; Evans and Gordon, 
19941, was derived from the Nimbus Experiment Team radi- 
ance-chlorophyll data set [Acker, 19941 which contains less 
than 60 stations. 

In January 1997, NASA convened a small working group 
(SeaWiFS Bio-optical Algorithm Mini-Workshop; hereinafter 
referred to as SeaBAM) whose primary goal was the identifi- 
cation of chlorophyll a (C) and chlorophyll a + phaeopig- 
ments ([C + P]) algorithms suitable for operational use by 
SeaWiFS [Firestone and Hooker, 19981. Such algorithms are 
expected to encompass accurately a large diversity of bio- 

optical conditions since they will be used routinely to process 
data at the global scale. To achieve this goal, a large, globally 
representative evaluation data set, the SeaBAM data, was 
compiled from various sources, and criteria for objective eval- 
uation of algorithms were developed. The SeaBAM activity 
also provided an opportunity to evaluate and compare chloro- 
phyll a and [C + P] algorithms from past (CZCS), current 
(OCTS, POLDER), and near-future (MODIS) sensors. Such 
an evaluation would also provide useful information for the 
recently initiated ocean color satellite intercomparison studies 
such as SIMBIOS (Sensor Intercomparison and Merger for 
Biological and Interdisciplinary Oceanic Studies) [Esaius et al., 
19951. 

In this paper we report on the results of the evaluation of 17 
algorithms tested using the SeaBAM data. The composition 
and characteristics of the SeaBAM data and criteria used in 
the evaluation of these algorithms are described. The relative 
merits of various algorithm formulations, tuned to SeaBAM 
data, are also presented, and their suitability for operational 
use by SeaWiFS and compatibility with past ocean color data 
are discussed. 

2. Algorithms 

Two semianalytic models and 15 empirical equations were 
evaluated (Table 2). Some of the algorithms require Rrs, and 
others require normalized water-leaving radiance Lwn. The 
equations presented in this paper reflect the versions of the 
algorithms in April 1997 at the conclusion of the SeaBAM 
activity [Firestone and Hooker, 19981, except for the global 
versions of the Carder and Garver-Siegel models which were 
parameterized and evaluated following this workshop. This 
diverse collection of algorithms is briefly described below. 

2.1. Semianalytic Models 

The Carder model (K. L. Carder et al., Semianalytic MODIS 
algorithms for chlorophyll and absorption with bio-optical do- 

mains based on nitrate depletion temperatures, submitted to 
Journal of Geophysical Research, 1998), is a semianalytic algo- 
rithm based on the b,/(a + bh) to Rrs relationship [Gordon et 
al., 19881. It uses the Rrs at four SeaWiFS wavelengths to 
derive the absorption coefficient of phytoplankton at 675 nm, 
a,,(675), and the absorption coefficient of colored dissolved 
organic matter (CDOM) at 400 nm, ~~(400). Chlorophyll a 
concentration is then calculated from an empirical relationship 

between a,,(675) and chlorophyll a. A default, two- 

wavelength empirical algorithm (Rrs490iRrs555) is used when 
a,,(675) is outside a predetermined search range. Two ver- 
sions of the Carder model were evaluated: an initial version 
parameterized for subtropical, unpackaged pigment data and a 
second version parameterized for more packaged pigments 
and global application [Carder et al., 19981. 

The GarveriSiegel model [Garver and Siegel, 19971 is a semi- 
analytic algorithm based on the quadratic form of the b,/(a + 
bh) to Rrs relationship. The model uses predefined shapes for 
specific absorption and backscattering coefficients to derive, 
through a nonlinear statistical method, the chlorophyll a con- 
centration, the absorption coefficient due to phytoplankton at 
441 nm, aph( 44 1 ), the absorption coefficient due to other 
particulate and dissolved matter at 441 nm, adm (44 1) , and the 
backscattering coefficient of particles at the same wavelength, 
b,,( 44 1). The model was initially tested against data from the 
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Table 2. Empirical Algorithms 

Algorithm Type Result Equation(s) Band Ratio (R), Coefficients (a) Reference 

Global 
processing 

(GPs) 

Clark three- 
band (C3b) 

Aiken-C 

Aiken-P 

OCTS-C 

OCTS-P 

POLDER 

CalCOFI two- 
band linear 

CalCOFI two- 
band cubic 

CalCOFI three- 
band 

CalCOFI four- multiple 
band regression 

Morel-l power 

power 

cubic 

cubic 

Morel-2 

Morel-3 

Morel-4 

power 

hyperbolic + 
power 

hyperbolic + 
power 

power 

multiple 
regression 

cubic 

power 

cubic 

multiple 
regression 

c,, = 1()w+nl*R’) 

(-,, = lo(n*+a3*R2) 

[C + P] = C,,; if C,, and C,, > 1.5 pg 
L-’ then [C + P] = Cz3 

[C + p] = lO(U”f”“R) 

C,, = exp(aO + al*ln(R)) 
C,, = (R + a2)/(a3 + a4*R) 
C = C,,; if C < 2.0 wg L-’ then C = C,, 
C,, = exp(aO + al*ln(R)) 
C,, = (R + a2)/(a3 + a4*R) 
[C + P] = Cz2; if [C + P] < 2.0 wg L-’ 

then [C + P] = C,, 
c = lo(an+al*R) 

[C + P] = 10 (a”+nl’Rl+aZ*R*) 

R 1 = log(Lwn443/Lwn550) 
R2 = log(Lwn520iLwn550) 
a = [0.053, -1.705, 0.522, -2.4401 

R = log((Lwn443 + Lwn520)/Lwn550) 
a = [0.745, -2.2521 
R = Lwn490iLwn555 
a = [0.464, -1.989, -5.29, 0.719, -4.231 

R = Lwn490iLwn555 
a = [0.696, -2.085, -5.29, 0.592, -3.481 

R = log((Lwn520 + Lwn565)/Lwn490) 
a = [-0.55006, 3.4971 
Rl = log(Lwn443/Lwn520) 
R2 = log(Lwn490/Lwn520) 
a = [0.19535, -2.079, -3.4971 
R = log(Rrs443iRrs565) 
a = [0.438, -2.114, 0.916, -0.8511 
R = log(Rrs490iRrs555) 
a = [0.444, -2.4311 
R = log(Rrs490iRrs555) 
a = [0.450, -2.860, 0.996, -0.36741 

C = exp(aO + al*Rl + a2*R2) R 1 = ln(Rrs490iRrs555) 
R2 = ln(Rrs510iRrs555) 

C = exp(a0 + al*Rl + a2*R2) 

c = 1o(aO+al”R) 

C = exp(aO + al*R) 

c = 10(~“+a,*R+a2*R2+a3*R’) 

a = [1.025, -1.622, - 1.2381 
R 1 = ln(Rrs443iRrs555) 
R2 = In(Rrs412iRrs510) 
a = [0.753, -2.583, 1.3891 
R = log(Rrs443iRrs555) 
a = [0.2492, -1.7681 
R = ln(Rrs490/Rrs555) 
a = [1.077835, -2.5426051 
R = log(Rrs443iRrs555) 
a = [0.20766, -1.82878, 0.75885, -0.739791 
R = log(Rrs490iRrs555) 
B = [1.03117, -2.40134, 0.3219897, -0.2910661 

1 

2 

3 

3 

4 

5 

7 

References: 1, Evans and Gordon [1994]; 2, Muller-Karger et al. [1990]; D. Clark; McClain and Yeh [1994]; 3, A&en et a/. [1995]; 4, Science on 
the CL1 Mission, p. 16; Ocean Optics XIII, Halifax, October 1996; 5, Ocean Optics XIII, Halifax, October 1996; personal communication to C. 
McClain, NASA; 6, A. Bricaud, personal communication to S. Maritorena; 7, MifcheN and Kahru [ 19981; 8, Ocean Optics XIII, Halifax, October 
1996; 9, A. Morel, personal communication to S. Maritorena. 

Sargasso Sea [Garver and Siegel, 19971. Recent developments 
included the use of a,,,(A) values from Pope and Fry [1997] 
instead of Smith and Baker’s [1981], the chlorophyll-specific 
phytoplankton absorption spectra of Morel [1988] instead of 
that from Bricaud et nl. [1995], and a different value for the 
exponential decay constant of the detrital and dissolved ab- 
sorption. Details of adjustments made to the model for the 
SeaBAM intercomparisons are provided by Gurver [1997]. 

2.2. Empirical Models 

Most CZCS-pigment estimates have been made using the 
global processing switching (GPs) algorithm [Gordon et al., 
1983; Feldman et al., 1989; Evans and Gordon, 19941 which uses 
Lwn443iLwn550 at concentrations below -1.5 Fg L-’ and 
switches to Lwn520JLwn550 above 1.5 pg L-‘, when the 
former band ratio gets too low (Table 2). The Clark three-band 
(C3b) [Muller-Karger et al., 19901 uses the same bands as the 
GPs but avoids band switching by summing the 443 and 520 
channels, thereby compensating for the weakness of the 443 
nm band at high pigment concentrations. The Aiken hyper- 
bolic models estimate C and [C + P] by the combination of a 
hyperbolic function up to 2 pg L-’ with a power function at 
higher concentrations [Aiken et nl., 199.51. The OCTS-C model 

is a power-law formulation which uses the sum of Lwn520 and 

Lwn565 over Lwn490 to estimate C, whereas the OCTS [C + 

P] model (OCTS-P) uses two-band ratios, Lwn443/Lwn520 and 

Lwn490/Lwn520, in a multiple regression function. The 

POLDER algorithm is considered empirical because it is based 

on a simple equation relating C to a band ratio, although the 

equation was actually derived from the use of a modified ver- 

sion of the semianalytic model of Morel [ 19881, parameterized 

for absorption instead of diffuse attenuation coefficient (A. 

Bricaud, personal communication, 1997). 

The CalCOFI algorithms are derived from CalCOFI data 

[Mitchell nnd tihru, 19981. The CalCOFI two-band relates C 

to Rrs490/Rrs555 using a power equation. The CalCOFI two- 

band cubic is a third-order polynomial equation using Rrs4901 

Rrs555. The CalCOFI three-band, a multiple regression equa- 

tion, has similarities with the OCI’S-P algorithm and uses the 

Rrs490iRrs555 and Rrs510/Rrs555 band ratios. The functional 

form of the CalCOFI four-band equation is similar to Cal- 

COFI three-band except that it uses Rrs443/Rrs555 and 

Rrs412iRrs510 (Table 2). The Morel-l equation was presented 

at the Ocean Optics XIII meeting [Morel, 19971 and relates C 

to Rrs443/Rrs555 using a power equation (Table 2). Morel-2 is 
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Table 3. Data Sources and Characteristics of SeaBAM Data Set 

Data Set Provider/PI Location Date n fchla .fDk, h&la ~ohaeo Wavelength 

BBOP92-93 D. Siegel Sargasso Sea 
BBOP94-95 D. Siegel 
WOCE J. Marra 

Sargasso Sea 
50”S-13”N. 88”-91”W 
10”S-30”N: 18”-37”W 

EQPAC C. Davis 0, 14O”W 
NABE C. Trees 46”-59”N. 17”-2O”W 
NABE 
CARDER 

C. Davis 46”N, 19”W 
K. Carder North Atlantic 

Pacific 
Gulf Mexico 
Arabian Sea 

CALCOFI G. Mitchell California Current 

MOCE1 D. Clark Monterey Bay 
MOCE2 D. Clark Gulf California 
North Sea R. Doerffer 55”-52”N, O”-8”E 
Chesapeake Bay L. Harding -37”N, 75”W 
Canadian Arctic G. Cota -74.38”N, 95”W 
AMT G. Moore 50”N-50”s 

Total 

monthly, 1992-1993 
monthly, 1994-1995 
March 1993 
April 1994 
March and Sept. 1992 
May 1989 
April 1989 
Aug. 1991 
July 1992 
April 1993 
Nov. 1994 and 

June 1995 
quarterly. Aug. 1993 

to July 1996 
Sept. 1992 
Auril 1993 
July 1994 
April and July 1995 
August 1996 
Sept. 1995 and 

April 1996 

72 72 72 72 410, 441, 488, 520, 565, 665 
67 61 61 67 410, 441, 488, 510, 555, 665 
70 70 410, 441, 488, 520, 565, 665 

126 126 410, 441, 488, 520, 550, 683 
72 72 412, 441, 488, 521, 550 ... 
40 40 410, 441, 488, 520, 550, 683 
87 87 412, 443, 490, 510, 555, 670 

303 303 303 

8 8 0 8 412, 443, 490, 510, 555 ... 
5 5 5 5 412, 443. 490,510, 555 . . . 

10 10 412, 443. 490, 510, 555, 670 
9 9 9 412, 443, 490, 510, 555, 671 
8 8 7 412, 443, 490, 509, 555, 665 

42 42 33 412,443,490,510, 555 ... 

919 656 448 442 9 

412, 443, 490, 510, 555, 665 

fchlo: fluorometric chlorophyll a; fphaca: fluorometric phaeophytin a; hchla: HPLC chlorophyll a; h,,,,,: HPLC phaeophytin a 

similar to Morel-l but uses Rrs490/Rrs555. Morel-3 and -4 are 
other examples of a cubic polynomial with Rrs443iRrs555 and 
Rrs490/Rrs555, respectively, and were derived from in situ 
measurements and an updated version of the Morel [1988] 
semianalytic model (A. Morel, personal communication, 
1997). 

3. SeaBAM Data Set 

To evaluate the performance of chlorophyll and [C + P] 
algorithms to be used at global scale with SeaWiFS data, an in 
situ data set was needed to compare with results predicted by 
the various models. Such an evaluation data set should, ideally, 
meet the following requirements: (1) contain Rrs or Lwn at or 
close to the SeaWiFS visible wavelengths; (2) have the in situ 
chlorophyll a concentrations associated with the stations from 
which Rrs or Lwn were available or derivable, (3) encompass 
the widest possible chlorophyll a concentration range, (4) con- 
tain data from the widest possible variety of bio-optical prov- 
inces, (5) not contain data used for the development of the 
algorithms under evaluation, and (6) be the same for all algo- 
rithms under evaluation. 

The constraints imposed by requirements 1 and 5 resulted in 
an evaluation data set too small to ensure significance or gen- 
erality to the evaluation results. Therefore a data set was cre- 
ated by merging the data used by the various SeaBAM partic- 
ipants [Firestone and Hooker, 19981 as well as other data 
available in the NASA SeaBASS bio-optical archive [Hooker et 
nl., 19941. 

3.1. Radiometric Data: Sources, Processing, and Quality 
Control 

The Rrs in the SeaBAM data originated from various 
sources and were derived in different ways depending on which 
investigator processed the data (Table 3). The BBOP and 
JGOFS data (WOCE, EQPAC, and NABE) were assembled 
and processed at University of California at Santa Barbara and 
represent almost one half of the.SeaBAM data [Garver, 19971. 

The Carder data set is composed of above-water measure- 

ments [Carder and Steward, 1985; Lee et al., 19941 collected 

during various cruises and locations. The “optimization 

method” [Lee et al., 19961 was used on high-chlorophyll data 
where water-leaving radiance in the infrared was not zero, 

while the “quick and easy” method [Lee et al., 19961 was used 

on the remaining Carder data. The CalCOFI data set contains 
more than 300 stations, which were processed at Scripps Insti- 

tution of Oceanography [Mitchell und Kahru, 19981. Atlantic 

meridional transect (AMT) data were provided directly to us 
by Plymouth Marine Laboratory as Rrs. The North Sea, 

MOCE, Chesapeake Bay, and Canadian Arctic measurements 

were also extracted from the SeaBASS archive, and the latter 

three Rrs sets were processed at Goddard Space Flight Center 

(GSFC). The North Sea and Chesapeake Bay data were col- 

lected in waters with high total suspended matter loads (>l 

mg/L) and should be considered Case II. A few other stations 
may also be Case II, but such a classification is difficult to 

conduct from the sole basis of the radiometric data. 

All data were processed in ways compatible with the Sea- 

WiFS protocols [Mueller and Austin, 19951. However, data 

were not corrected for instrument self-shading [Gordon and 
Ding, 19921 at high C concentration because some of the in- 
formation required to perform these corrections (i.e., absorp- 

tion coefficient of the medium, radius of the instrument, Sun 

zenith angle, and ratio between diffuse and direct Sun irradi- 

ance) was not available. The various processing methodologies 

used for in-water data resulted in Rrs expressed as LJ 
Ed(O+), L,(O-)/E,(O-) or L,(O-)/E,(O+), where L, is 

the water-leaving radiance, L, is the upwelling radiance, E, is 
the downwelling irradiance, and 0+ or 0- indicates measure- 

ments just above or just beneath the sea surface, respectively. 

For consistency, all data were converted to Rrs = L ,/E,( 0 + ) 
using L, = 0.54L,(O-), and Ed(O-) = 0.96E,(O+), 
where 0.54 is a mean coefficient summarizing the effect of 
internal reflection of the upwelling flux during transmission 

through the interface, and 0.96 accounts for the loss of the 
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downwelling flux by reflection at the air-sea interface [Austin, 
1974; Gordon et al., 1988; Morel and Antoine, 19941. Both 
coefficients assume low solar zenith angle and calm sea sur- 
face. 

. 

The SeaBAM data set includes -10% of Rrs data calculated 
from above-surface measurements (i.e., Carder and North Sea 
data), while all other data were derived from in-water mea- 
surements. The protocols for above-surface measurements are 
still under development, and the agreement between above- 
surface and in-water measurements is extremely dependent 
upon experimental and environmental conditions. However, 
on the basis of the tests described below, the Rrs from above- 
surface measurements did not differ significantly from the 
other data. 

Radiance band ratios versus C and single bands versus C 
were plotted for the various data sets in order to identify 
outliers. These plots were very useful in revealing data with 
errors and in determining which data could be corrected and 
which should be removed from the SeaBAM data. A second 
quality control measure used preliminary results from eight 
chlorophyll or [C + P] algorithms to identify stations with one 
or more “anomalous” radiance values. These models (Cal- 
COFI two-band linear; CalCOFI four-band; GPs, Morel-l; 
Morel-3; OCTS-C; Carder; GarveriSiegel) were chosen be- 
cause their outputs showed a good linearity in log-log space 
(minimal curvilinearity) and/or they use three or more wave- 
lengths (see Table 2). A station was considered an outlier when 
the ratio of the modeled chlorophyll a concentration to the in 
situ concentration exceeded 5 : 1 or was less than 1: 5 for two or 
more models. These rejection criteria were chosen not to be 
too restrictive in order to eliminate only extreme stations. 
After the elimination of 54 suspect stations, 919 stations re- 
mained in the final SeaBAM data set (Table 3). 

3.2. In Situ Chlorophyll a Data 

The SeaBAM data set is comprised of fluorometric [Yentsch 
and Menzel, 1963; Hahn-Hansen et al., 19651 and/or high- 
performance liquid chromatography (HPLC) measurements of 
chlorophyll a and phaeophytin a (Table 3). For the purpose of 
evaluating the suitability of models for global application, 
where chlorophyll concentrations range over 3 orders of mag- 
nitude, the largest and most representative data set is required. 
It was not possible to stratify the SeaBAM data by chlorophyll 
method and still achieve global coverage. Therefore HPLC and 
fluorometric measurements were merged to form the chloro- 
phyll a evaluation data set. HPLC C was preferentially used, 
when available, because this method is considered more pre- 
cise than fluorometric methods and fluorometric C was used 
for subsets which do not contain HPLC data. 

The distribution of the chlorophyll a data in the SeaBAM 
data and its subsets are illustrated in Figure 1. The concentra- 
tions range between 0.019 and 32.79 pg L-’ with a geometric 
mean of 0.27 pg L-‘, somewhat higher than the global ocean 

mean (0.19 pg L-‘) reported by Antoine et al. [1996]. The 
BBOP, WOCE, and EQPAC data sets represent most of the 
data at the low end of the concentration range. The Carder, 
CalCOFI, and AMT data cover a relatively wide concentration 
range, from oligotrophic to eutrophic waters. NABE, North 
Sea, Chesapeake Bay, and Canadian Arctic data are mostly at 
concentrations over 1 pg L-‘. If 0.1 and 1 pg L-’ are taken as 

approximate limits between oligotrophic and mesotrophic wa- 
ters and between mesotrophic and eutrophic waters [Antoine et 
al., 19961, then the SeaBAM data are approximately composed 
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Figure 1. Frequency distribution of Chl a concentration in 
the SeaBAM data set (top panel) and in the 11 subsets. 

of 23,59, and 18% of oligotrophic, mesotrophic, and eutrophic 
stations, respectively. Comparing these proportions with those 
reported by Antoine et al. [1996] for the world ocean (oligo- 
trophic: 55.8%; mesotrophic: 41.8%; and eutrophic: 2.4%) re- 

veals that the SeaBAM data tend to be overrepresented by 
mesotrophic and eutrophic waters. Alternatively, for algorithm 
evaluation purposes, where a more uniform distribution over 
the concentration range may be desirable, the data set has a 
relative insufficiency of concentrations exceeding 7-8 pg L-’ 

3.3. In Situ [C + P]: Data and Estimates 

The [C + P] algorithms for SeaWiFS are needed to permit 
comparisons with historical CZCS data. Most algorithms we 
evaluated estimate C, but several were designed to estimate 
[C + P] (Table 2). Only 448 SeaBAM stations had fluorometric 
measurements of both chlorophyll a and phaeophytin a (Table 
3). Since equitable algorithm comparisons require data sets 
with similar characteristics and number of stations, a statistical 
relationship between C and [C + P] was investigated to allow 
reasonable estimates of [C + P] for those stations where only 
chlorophyll a was available. A set of 2329 stations sampled 
from 1978 to 1996, including those available in the SeaBAM 
data with fluorometric measurements of both Chl a and pha- 
eopigment in the O-10 m depth range, was extracted from the 
SeaBASS “Historical Pigment Database” [Hooker et al., 19941. 
The data were mostly collected off the U.S. coasts and the 
Atlantic and Pacific Oceans by various investigators. Stations 
with [phaeo] > [Chl a] (n = 67) were considered extreme 
cases and removed. A type II (RMA) regression on log- 



24,942 O’REILLY ET AL.: CHLOROPHYLL ALGORITHMS FOR SEAWIFS 

Table 4. Mean Extraterrestrial Solar Irradiance 

F 
Wavelength, nm 

2; 
PW cm nrn-’ 

SeaWiFS Bands * 
412 170.7943 
443 189.4438 
490 193.6842 
510 188.3675 
555 185.3973 
670 153.3877 
765 122.5128 
865 99.0214 

OCTS Bands? 
412 170.96 
443 188.17 
490 194.59 
520 185.74 
565 184.49 
670 153.12 
765 122.61 
865 98.55 

*H. Gordon, personal communication. 1998. 
‘Advance Earth Observing Satellite (ADEOS). OCTS Data Process- 

ing Algorithms Description version 2.01, NASDA, June 1997. 

wavelengths, 555 and 565 nm data are not interchangeable. 
This is particularly evident at low C concentrations, where for 
example, substituting Rrs565 for Rrs555 in a band ratio would 
give anomalously higher reflectance ratios than those expected 
for the clearest waters, based on backscattering data derived 
from Morel [1974] and recent absorption coefficients for pure 
seawater from Pope and Fry [1997]. 

The feasibility of estimating Rrs555 from measurements of 
Rrs565 was explored using BBOP94-95 data which have con- 
current measurements at both wavelengths. A strong linear 
relationship was found (n = 78; R2 = 0.975): 

Rrs555 = l.O628*Rrs565 + 0.0002 (2) . 

Equation (2) was therefore applied to, the BBOP92-93 
Rrs565 data, to generate proxy estimates of Rrs555, and to the 

WOCE data set, which has a narrow range of low C concen- 
trations very similar to the BBOP data (Figure 1). 

transformed data yielded the following equation (n = 2262; 
R2 = 0.993): 

[C + P] = 1.34*c”.98’ (1) 

It is acknowledged that C and [C + P] cannot be considered 
as completely independent variables in the above regression. 
The major benefit of this approach is to allow the derivation of 
a chlorophyll/[C + P] relationship from a more stable basis 
than one based on chlorophyll versus phaeopigment. Because 
(1) yielded C/[C + P] ratios comparable to other reported 
ratios [e.g., Smith and Baker, 1978; Morel and Berthon, 1989; 
Balch et al., 19921, it was used to estimate the [C + P] concen- 
tration for stations where the complete fluorometric informa- 
tion was missing (n = 471). 

3.4.2. Other radiometric adjustments. Two algorithms, 

OCTS-C and POLDER, use radiance data at 565 nm instead 
of 555 nm (Table 2). It is inappropriate to invert (2) to gen- 
erate proxy Rrs565 from Rrs555 data because its applicability 
is restricted to the low C concentrations (co.4 pg L-‘) used in 

its derivation. Another approach was thus used to convert 
between 555 and 565 nm and between 510 and 520 nm data. It 
uses the reflectance ratios predicted at any given C concentra- 
tion by the semianalytic mode1 of Morel [1988] adapted with 
Pope and FIY [ 19971 a, data. These predicted reflectance ratios 
are shown in Figure 2 along with those predicted by the semi- 
analytic model of Gordon et al. [1988]. According to these 
models, the Rrs555iRrs565 reflectance ratio decreases from 
-1.13 to -0.97 as C increases from 0.015 to 7 pg L-‘, whereas 
for the same concentration range, RrsSlO/Rrs520 varies from 
-1.32 to -0.95. Contrary to the 555-565 nm region, the 510- 
520 nm domain is highly influenced by pigment absorption and 
is thus more variable. The Rrs510iRrs520 versus C and Rrs555/ 

1.4 

3.4. Radiometric Data Adjustments 

For algorithms that required normalized water-leaving radi- 
ances as input, Rrs was multiplied by the mean extraterrestrial 
solar irradiance [Neckel and Labs, 19841 weighted by the spec- 
tral response of the relevant sensor bands (see Table 4). In 
addition, because the wavelengths required by the various al- 
gorithms (Table 2) did not always match those available in the 
SeaBAM data (Table 3), several radiometric adjustments were 
applied to some data sets. These adjustments were aimed to 
enhance the consistency of the algorithm comparison by test- 
ing all algorithms using the full dynamic range of available 
radiance data (n = 919). 

I “,““, “““‘1 ” ‘- 

-More1(1988) 510/520 

-m--o--~- Morel(1988) 555/565 

- Gordon et al. ( 1988) 5 I01520 

----a---- Gordoneral. (1988) 5551565 

0 
‘S 
cd 1.1 

d 

1 

For the first three shorter wavelengths the maximum differ- 
ence between data and bands required by the various algo- 
rithms is 2 nm and was considered negligible. The major dif- 
ferences occur for algorithms that require either 510 or 520 nm 
data, while SeaBAM contains a mixture of these pairs of mea- 

surements. Similar mismatches exist between algorithms using 
either 550, 555, or 565 nm data and SeaBAM data which are 
comprised of a mix of these three wavelengths. 

0.8 L 
0.01 1 10 100 

Chl a (ugll) 

3.4.1. 565-555 nm. Even though chlorophyll absorbs light 
weakly in the 550-565 nm region and the Rrs spectrum is 

Figure 2. Ratios of Rrs510iRrs520 and Rrs555iRrs565 pre- 

relatively insensitive to changes in C concentration at these 
dicted from semianalytic models of Morel [ 19881 and Gordon et 
al. [1988] as a function of [Chl a]. 
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Rrs565 versus C relationships derived from Morel’s model 
were used as a basis for estimating Rrs at one wavelength from 
the other as a function of in situ C concentration. 

3.5. Final Rrs-Chlorophyll Data Set 

The Rrs490/Rrs5.55 ratio versus in situ C for the SeaBAM 
data and for its subsets is shown in Figure 3. The figure illus- 
trates the dynamic range associated with each subset and of the 
combined data set. The dispersion (orthogonal to main axis) of 
the data is another informative feature of these plots. The 
CalCOFI data set, for instance, appears very coherent, 
whereas some other data sets are slightly noisier. Although 
SeaBAM data originate from various investigators and were 
processed differently by different people, the variability in the 
radiometric data is reasonably limited. At high C concentration 
the dispersion of radiance ratios in the SeaBAM data in- 
creases, mostly because of the presence of Case II waters. The 
shape of the scatterplot for the SeaBAM data is clearly sigmoid 
(in log-log space) as predicted by the Morel [1988] and Gordon 
et al. [1988] models. This trend, though less marked, is seen in 
the CalCOFI data. At lowest C concentrations the highest 
Rrs490Rrs55.5 ratios are slightly lower than the theoretical 
limit (-6.66) for clear natural waters. 

4. Algorithm Evaluation Criteria 
A variety of statistical and graphical criteria were used to 

evaluate agreement between C, estimated by the various mod- 
els, and in situ C (Table 5). Statistical comparisons between in 

0.01 0.1 1 10 100 0.01 0.1 1 10 100 

Chl a (q/l) Chl a (IQ/I) 

Figure 3. Scatterplots of Rrs490/Rrs555 versus in situ [Chl 
a] for the SeaBAM data set (top left panel) and in the 11 
subsets. The RMA regression line for the data set is repeated 
in each of the 11 subset plots as a reference. 

Table 5. Criteria for Model Evaluation (Log-Transformed 
Data) 

Evaluation 

Regression slope 
Regression intercept 
Bias 
R2 
RMS 
Negative estimates 

Statistical 
1 -c 0.01 
0 + 0.01 
0 + 0.01 
>0.9 

CO.185 
none 

Graphical 
Scatter linear distribution; few outliers 

(model:in situ, <5:1 and >1:5) 
Quantile-quantile linear; data overlap the 1: 1 line; 

no discontinuities 
Relative frequency congruency with in situ data 

situ C and model C were based on log-transformed data, in 

part, to encompass the several-orders-of-magnitude variation 
in C, and because log-transformed C was more normally dis- 
tributed than untransformed data (Figure 1) [also see Camp- 
bell, 1995a]. The slope and intercept of the linear equation 
relating model to in situ data was computed using a type II 
(reduced major axis) functional regression model which is con- 
sidered the appropriate model when the assignments to x or y 
axes are arbitrary and when substantial variance is expected in 
both variables [Ricker, 1973; Laws and Archie, 1981; Press and 
Teukolsky, 19921. Statistics (Table 5) such as regression slope 
and intercept, coefficient of determination (R2) and root- 
mean-square error (RMS) provide a numerical index of model 
performance but may not indicate nonlinear trends or other 
important features in the relationship between model and in 

situ data. Several complementary graphical portrayals were 
constructed to illustrate these features, including standard 
scatter, relative frequency, and empirical quantile-quantile 
plots [Chambers et al., 19831, hereinafter abbreviated as q-q. 
The q-q plot, when both sets have the same number of obser- 
vations, as is our case, is simply a plot of the model data sorted 
(ascending order) against the sorted in situ data. 

5. Algorithm Evaluation Results 

The statistical results of the algorithm evaluation are pre- 
sented in Table 6. Graphical results for 12 algorithms, selected 
because they represent a particular functional form or satellite 
sensor, are illustrated in Figure 4. 

In general, all algorithms performed reasonably well, at least 
in part of the whole concentration range. It is noteworthy that 
two [C + P] algorithms used extensively to process CZCS data, 
the GPs and Clark three-band, tended to underestimate in situ 
[C + P] (Table 6 and Figure 4). Relative frequency distribution 
plots reveal that modes for these models are close to the in situ 
[C + P] mode but that both models overestimate the frequency 
of low concentrations. A discontinuity induced by the equation 
switch in the GPs (Table 2) is evident in the q-q plot. The 
statistical artifacts in CZCS [C + P] retrievals resulting from 
the GPs algorithm switch (e.g., bimodality, frequency discon- 
tinuity) have been reported elsewhere [Muller-Karger et al., 
1990; Denman and Abbott, 1988; Campbell, 1995b]. 

A discontinuity is also observed with the Aiken-C algorithm 
which switches from the hyperbolic to the power equation at 2 
pg L-‘, and there is a marked curvature evident in scatter and 
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Table 6. Summary of Statistical Results of Algorithm Evaluations 

Rank Algorithm N Intercept Slope W RMS Bias Nonlinear Discontinuity 

1 Morel-l 919 0.038 0.975 0.917 0.179 0.052 x 

2 Morel-3 919 0.040 0.970 0.915 0.183 0.058 

3 CalCOFI 2-band cubic 919 0.072 0.980 0.918 0.190 0.083 

4 OCTS-C 919 0.054 1.148 0.933 0.190 -0.030 X 

5 Carder (global) 919 -0.033 0.990 0.876 0.213 -0.027 

6 CalCOFI 2-band linear 919 0.074 0.991 0.915 0.192 0.079 X 

7 Morel-2 919 0.081 1.037 0.915 0.190 0.060 

8 CalCOFI 3-band 919 0.062 0.939 0.908 0.205 0.097 

9 Morel-4 919 0.102 1.059 0.907 0.204 0.069 

10 Siegel-Garver (global) 919 PO.012 0.928 0.734 0.311 0.029 

11 GPs 919 -0.239 1.004 0.923 0.292 -0.241 X 

12 CalCOFI 4-band 919 0.073 0.934 0.900 0.218 0.110 

13 POLDER 919 0.215 1.190 0.921 0.241 0.107 

14 Carder (subtropical) 919 PO.128 1.073 0.872 0.284 -0.169 
15 Aiken-C 877* -0.094 1.083 0.774 0.330 -0.139 X X 

16 Aiken-P 877* PO.120 1.118 0.787 0.339 PO.168 x X 

17 Clark 3-band 919 -0.306 0.913 0.905 0.323 -0.267 

18 Siegel-Garver (BBOP) 919 0.141 0.776 0.896 0.345 0.269 

19 OCTS-P 919 -0.345 1.750 0.913 0.842 -0.680 X 

*Forty-two negative estimates. 

q-q plots. Aiken et al. [1995] noted that an insufficient number 
of high chlorophyll stations in their data set prevented the 
fitting of a single hyperbolic equation to the entire set. Note 
also that this model generated negative concentrations for 42 
stations because it uses a “clear water” Rrs490iRrs5.55 limit 
(5.29), which is below that observed for these stations. 

Considering the two semianalytic algorithms, the Carder 
algorithm yielded better overall agreement with in situ C than 
the GarveriSiegel model. As described earlier, the philosophy 
of model inversion is very different in these models despite the 
fact they are both based on the same formulation linking Rrs 
to absorption and backscattering. The parameterization in 
these two models is also very different. For instance, some of 
the coefficients in the Carder model were based on specific 
tuning to in situ data, whereas the GarveriSiegel model uses 
parameters available in the literature without any particular 
tuning. Compared with the SeaBAM data, the GarveriSiegel 
model underestimated the lowest concentrations as well as 
concentrations above 1 Kg L-‘. The Carder subtropical model 
(Table 6) performed well in the midconcentration range, while 
it generally underestimated concentrations at the low and high 
ends of the range. In sharp contrast the Carder global model 
performed as well as several of the best empirical models (see 

Table 6). For both semianalytic models, the outliers in the l-10 
pg L-’ concentration range are Case II stations. 

A residual sigmoid pattern in the q-q plots is a recurrent 
feature in several algorithms (e.g., GPs, Clark three-band, Cal- 
COFI three-band, CalCOFI four-band, Morel-l, OCTS-C). 
The Morel-l and Morel-3 algorithms use Rrs443iRrs555, but it 
is clear from the q-q plots that Morel-3, the cubic polynomial, 
agrees better with the 1: 1 line. The relative frequency plot also 
shows a better agreement between modeled and actual data for 
the Morel-3 algorithm. Another interesting aspect also well 
illustrated by the Morel-l and -3 algorithms is the lower dis- 
persion of the data at low C concentrations, typical of algo- 
rithms using the 4431555 ratio. 

The OCTS and POLDER are the operational algorithms 
used for the 9 months of data collected by ADEOS. The 
POLDER algorithm gives reasonable estimates at concentra- 
tions under 0.4 pg L-‘, but it overestimates higher concentra- 
tions. The OCTS-C algorithm exhibits some curvature along 

the concentration range, and its slope departs significantly 
from 1, but the negative bias is small (Table 6), and the algo- 
rithm behaves well globally. 

Among the CalCOFI algorithms, the best results are ob- 
tained with the two-band cubic polynomial function. The algo- 
rithm performs well at all concentrations except at the lower 
end where it overestimates concentrations. It is noteworthy 
that in this particular case, an increasing complexity in the 
formulations (three and four bands used in quadratic func- 
tions) did not increase overall performance of these algo- 
rithms. 

The algorithms are ranked according to their overall statis- 
tical performance in Table 6. Evidence of model discontinui- 
ties or nonlinearity is also summarized in this table. For each 
statistical parameter, the algorithms were ranked (slope closest 
to 1, intercept and bias closest to 0, highest R*), and these 
scores were summed to yield the overall final rank. While this 
ordination scheme arbitrarily gives the same weight to each 
statistical parameter, it nevertheless does indicate the overall 
performances of the various models. Features such as discon- 
tinuities, curvatures, and mismatches in relative frequency with 
in situ were not used in the ranking. Consideration of these 
aspects would reduce the rank of some algorithms which are 

highly ranked. For example, the Morel-l, CalCOFI two-band, 
and CalCOFI cubic and OCTS-C are ranked higher than other 
empirical algorithms, but the graphical results show nonlinear 
trends for several of them. In summary, empirical equations 
generally performed better than the semianalytic algorithms 
and when considering both statistical and graphical criteria, 
those using cubic polynomial formulations, such as Morel-3 
and CalCOFI cubic, performed best. 

6. Analysis of Functional Forms 

The empirical models tested above vary in their formulation 
and complexity and collectively represent approaches of the 
last two decades. They use single or multiple band ratios and 
different formulations: power function, multiple regression, 
hyperbolic, second-order and third-order polynomials, and 
most use log-transformed data. Since these algorithms were 
developed and tuned using different data sets, it is difficult to 
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Figure 4. Comparisons between model and in situ data: (top) Gordon GPS, Clark three-band, Aiken-C, 
Carder (global), Garver/Siegel (global), and OCTS-C models; (bottom) POLDER, CalCOFI cubic, CalCOFI 
three-band, CalCOFI four-band, Morel-l, and Morel-3 models. From top to bottom: Scatterplots; quantile- 
quantile plots; relative frequency of model (thin black line) and in situ (thick faint line); band ratio versus in 
situ C for two-band ratio algorithms (pluses) and band ratio versus model (curve). Note that the axes for each 
row of figures are shown in column 1. Also shown are lines indicating model:in situ ratios of 1:5 and 5: 1. 
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Table 7. Ocean Chlorophyll Algorithms (Empirical Algorithms Tuned to the SeaBAM Data) 

Coefficient 
Functional 

Algorithm Form Band Ratio (R) a0 al a2 a3 a4 

OCla power R = log(Rrs490iRrs555) 0.3734 -2.4529 

OClb geometric R = log(Rrs490iRrs555) 0.3636 -2.3500 -0.0100 

OClc quad. poly. R = log(Rrs490iRrs555) 0.3920 -2.8550 0.6580 

OCld cubic poly. R = log(Rrs490iRrs555) 0.3335 -2.9164 2.4686 -2.5195 

OC2a MCP R = log(Rrs412iRrs555) 0.2457 -1.7620 0.2830 0.1035 -0.0388 

OC2b MCP R = log(Rrs443iRrs555) 0.1909 -1.9961 1.3020 -0.5091 -0.0815 

oc2 MCP R = log(Rrs490/Rrs555) 0.3410 -3.0010 2.8110 -2.0410 -0.0400 

OC2d MCP R = log(Rrs510iRrs555) 0.4487 -4.3665 2.7130 -0.2698 ~0.0821 

OC2e MCP R = log(Rrs520iRrs555) 0.5072 -6.2432 2.7787 3.3845 -0.0413 

OC3d MCP R = log((Rrs443 > Rrs490)/Rrs555) 0.3483 ~2.9959 2.9873 -1.4813 -0.0597 

OC3e MCP R = log((Rrs443 > Rrs520)/Rrs555) 0.5179 -4.7478 6.7321 -4.1287 -0.0121 

oc4 MCP R = log((Rrs443 > Rrs490 > Rrs510)/Rrs555) 0.4708 -3.8469 4.5338 -2.4434 -0.0414 

Formulations: Power, C = JO(uU+U’*R); geometric, C = 10~rro+n’;R) 
c = 10(o”+ul*R+aZ*R-+a3*R-). “O+ul*R+o**R-+a3*R-) 

+a2; quadratic polynomial, C = 10(a”+a’*R+aZ*RZ); cubic polynomial, 
, MCP, C = 10’ + a4, 

use their results to determine which formulations have the 
highest potential merit. To investigate this aspect, several sim- 
ple empirical formulations were “tuned” to the SeaBAM data 
to achieve a slope of 1.000 and an intercept of 0.000, maximum 
R*, and minimum RMS. 

The power equation has been widely used to relate radiance 
ratios to C, in part, due to the relative ease of derivation of 
model parameters using a simple linear regression of log- 
transformed data [e.g., Clark, 1981; Smith and Baker, 1982; 
Gordon et al., 1983; Mitchell and Holm-Hansen, 19911. Despite 
its simplicity, the power model (Table 7) captures a large 
fraction of the variation in radiance band ratios and the 3-or- 
ders-of-magnitude variation in C (Figure 5). It is clear that the 
power model fits the most frequent, central data but does not 
fit the extremes well. There is a significant overall sigmoid 
pattern evident in the scatter and q-q plots. This residual cur- 
vature results from the inability of power equations to capture 
the inherent sigmoid relationship between commonly used 
band ratios and in situ C in log-log space. Additionally, the 
relative frequency distribution of model C is much broader 
than in situ. 

Geometric models have been used only rarely. One example 
was reported by Hojerslev [1981]. Compared with the power 
equation, the geometric model agrees better with in situ C at 
low concentrations, but neither captures the inherent sigmoid 
pattern evident in plots of band ratios versus C which conse- 
quently results in a “residual” sigmoid trend in the plot of 
model C versus in situ C (Figure 5). 

A quadratic polynomial (second order) achieved a better 
match with highest in situ C than the power model but a 

relatively poorer match with lowest C values (Figure 5). The 
POLDER, CalCOFI two-band cubic, Morel-3, and Morel-4 
algorithms use a cubic polynomial (third-order) equation and 

generally performed better than most other algorithms tested. 
Our fit of a cubic polynomial equation to SeaBAM Rrs4901 
Rrs555 and C data matches the mode of the in situ distribution 
(relative frequency plots) better than the power, geometric, or 
quadratic models, but like these other models, it does not 
simulate well low C concentrations, and the frequency distri- 
bution around the mode is still too broad relative to that of in 
situ C (Figure 5). In the case of the SeaBAM data, no major 
improvements are observed when coefficients are derived for 
higher-order polynomials (i.e., order >3). 

Several other conventional two-band and three-band ratio 

algorithms were explored. A simple hyperbolic equation did 
not fit the SeaBAM data well (not shown). This might be 
expected because this model assumes symmetry, while the tails 

(asymptotes) of the Rrs490iRrs555 versus C joint distribution 
are not symmetrical. Some band combinations in cubic poly- 
nomials (e.g., (Rrs443 + Rrs490)/Rrs555, or (Rrs443 + 
Rrs490 + Rrs510)/Rrs555, not shown) have interesting poten- 
tial but did not yield to major improvements over the use of a 
simple Rrs490iRrs555 band ratio. 

7. Discussion 
7.1. SeaBAM Data Set 

This analysis is based on the largest in situ data set ever 
assembled (to our knowledge) for ocean color algorithm stud- 
ies. However, our algorithm evaluations are only as good as the 
data set itself. The data quality control procedures were de- 
signed to identify extreme outliers and erroneous data, but the 
rejection criteria were deliberately not too severe, so some of 
the remaining stations may still depart slightly from the general 
trend. Differences in data acquisition methodologies (e.g., 
above-surface versus in-water measurements), radiometer de- 
signs, calibrations, data processing, and environmental factors 
(sea and sky state) are probably responsible for part of the 
variability observed. If radiometric data were measured and 
processed in a more consistent manner, the dispersion within 
some of the subsets might be reduced [see Siegel et al., 19951, 
but it is not certain that dispersion (orthogonal to axial trends; 
see Figure 3) in the SeaBAM data would decrease, because the 
data set would still reflect the real inherent variability in bio- 

optical properties of the waters represented by the various 
subsets. 

The SeaBAM chlorophyll data set was formed by merging 
HPLC and fluorometric measurements of chlorophyll to en- 
compass the largest possible range of data and bio-optical 
provinces. The consequences of using either fluorometric or 
HPLC chlorophyll are difficult to assess mostly because limited 
information about the relationship between HPLC and fluoro- 
metric data is available in the literature [e.g., Trees et al., 1985; 
Bricaud et al., 19951. Moreover, the equivalence of these two 
measurements may vary with season, location, depth and con- 
centration range of data, as well as the way pigments were 
separated and the kind of statistical analyses performed. Flu- 
orometric concentrations are, usually, higher than HPLC esti- 
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Figure 5. Comparisons between models tuned to the SeaBAM data set and in situ data: OCla (power), 
OClb (geometric), OClc (quadratic polynomial), OCld (cubic polynomial), OC2 (modified cubic polynomi- 
al), and OC4 (maximum band ratio) algorithms. See Figure 4 caption for additional details. 

mations (e.g., in the SeaBAM data), but it is unrealistic to 
consider a unique relationship between the two methods to 
convert data from various dates and regions. Given these un- 
certainties, it seemed prudent not to apply any fluorometric/ 
HPLC conversion scheme to the SeaBAM data. Additional 
independent analyses are required which evaluate the compa- 
rability of fluorometric and HPLC chlorophyll a and the im- 
pact of blending measurements from these two methods on 
algorithm validation and calibration. 

POLDER, SeaWiFS, MODIS). This underscores the impor- 
tance of acquiring in situ observations which include all wave- 
lengths involved (Table 1). Correction for instrument self- 
shading at high C is also advisable, although recent results 
from Kahn and Mitchell [1998a] suggest that the correction for 
the Lwn490/Lwn555 band ratio is probably small (e.g., mean of 
<lo% for 11 stations, with C between 10 and 32.5 wg L-l). 

7.2. Empirical Versus Semianalytical Algorithms 

Whether the SeaBAM data adequately represent global bio- The semianalytic algorithms evaluated yielded results infe- 

optical variability is another important question. Several major rior to those from several empirical expressions. Yet semiana- 

bio-optical provinces of the world ocean are poorly or not lytic algorithms are potentially much more useful because they 

represented; the data set contains very little data from polar allow the derivation of other in-water, optically active constit- 

regions, none from Antarctica, and an insufficient number of C uents besides C, such as nonchlorophyllous absorption, 

observations above 8 and below 0.03 pg L-l. Future expansion CDOM, or backscattering. In their present state, semianalytic 

of the SeaBAM data set should not be considered as a simple algorithms are handicapped by their design and parameteriza- 
increase in the number of stations available but rather as an tion. Because they may employ four or more radiance bands, 

increase in the diversity of bio-optical conditions it encom- semianalytic algorithms also require more consistent data sets 
passes. Since radiometric bands separated by 10 nm (i.e., 510 with high spectral fidelity in order to perform as well as or 

versus 520 nm, or 555 versus 565 nm) are not interchangeable, better than simple two-band empirical algorithms. Some sim- 
radiometric adjustments such as those we performed are, in plifying assumptions, not always true in the world ocean, are 

the present state of the data set, necessary to ensure that used to limit the number of unknowns in semiempirical mod- 
algorithm comparisons and analyses are equitably based on the els. These assumptions often result in making constant some 

complete set of 919 stations. Additions to the SeaBAM data parameters which actually vary in the ocean (e.g., the slope in 

set should therefore take into consideration the increasing detrital absorption). Other limitations come from the param- 

need for intercomparison and evaluation of data or algorithms eterization of some terms used in the Rrs = f(b,/(a + b,,)) 
related to various satellite sensors (e.g., CZCS, OCTS, equation. Most of these are wavelength dependent but some 
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Table 8. Statistical Results for Chlorophyll Algorithms 
Tuned to SeaBAM Data 

Algorithm Type-Wavelengths, nm ‘W RMS 

OCla power-490, 555 0.915 0.175 
OClb geometric-490, 555 0.912 0.178 
OClc quadratic-490, 555 0.917 0.173 
OCld cubic-490, 555 0.918 0.172 
OC2a MCP-412, 555 0.892 0.197 
OC2b MCP-443, 555 0.916 0.173 
oc2 MCP-490, 555 0.918 0.172 
OC2d MCP-510, 555 0.849 0.235 
OC2e MCP-520, 555 0.744 0.311 
OC3d MCP, MBR-443, 490, 555 0.928 0.161 
OC3e MCP, MBR-443, 520, 555 0.921 0.169 
oc4 MCP, MBR-443, 490, 510, 555 0.932 0.156 

For all algorithms, N = 919, intercept = 0.000, slope = 1.000, and 
bias = 0.000. MCP, modified cubic polynomial; MBR, maximum band 
ratio. 

terms, such as specific absorption coefficient of phytoplankton 
* aph, are dependent on phytoplankton concentration or phy- 

toplankton community structure, which depend on the trophic 
status of the waters [Mitchell and Kiefer, 1988; Bricaud and 
Stramski, 1990; Cleveland, 1995; Sosik and Mitchell. 19951. This 
suggests it may be necessary to use a parameterization which 
takes biological/ecological variability into account [e.g., Cleve- 
land, 1995; Bricaud et al., 19951. Other parameterization weak- 
nesses exist at high C concentrations [see Morel, 19971 which? 
in the case of the Carder algorithm, are partially canceled by 

the use of an empirical default algorithm. The improved results 
obtained with the “global” version of both semianalytic models 

(Table 6) are encouraging examples showing that when appro- 
priately parameterized, these algorithms can achieve global 
estimates which are reasonably accurate. Some of these pa- 
rameterization problems may cancel at local or regional scales 

0.001 0.01 0.1 1 10 100 

c kM) 

Figure 6. Relationship between chlorophyll and Rrs4901 
Rrs555 for the ocean chlorophyll 2 empirical algorithm (solid 
curve) and Gordon et al. (19881 (dashed curve) and Morel 
[1988] (dotted curve) semianalytic models. In situ Rrs4901 
Rrs555 versus in situ C (pluses). (The a, coefficients used in 
semianalytic models are from Pope and Fy [1997]; b,, coef- 
ficients are from Morel [1974]. 

where variability introduced by biological processes may be 
more limited. At present the predictive skill of the semianalytic 

algorithms remains, however, inferior to that of empirical al- 
gorithms when applied to widely varying bio-optical provinces. 
Until such domains are well sorted and understood, the most 
conservative approach for acquiring a global satellite chloro- 
phyll data set is the use of a globally tuned empirical algorithm. 

7.3. New Formulations for Empirical Algorithms 

Most algorithms presented here perform reasonably well, 
and several may be used with satisfactory results for particular 
regions or concentration ranges. Those performing best over 
the whole C concentration range are based on cubic polyno- 
mials. However, none of them fit the low C values very well. 

7.3.1. Ocean chlorophyll 2 (OC2), modified cubic polyno- 
mial. In our attempts to fit a cubic polynomial to the Sea- 
BAM data, we were also not able to capture the lowest C- 
highest ratios of Rrs490/Rrs555 without compromising the fit 
elsewhere. Inspection of scatterplots and q-q plots suggested 
that the cubic polynomial formula required an additional cor- 
rection term (coefficient) which influences the shape of the 
curve at low C but has little effect at higher concentrations. 
Such a “modified cubic polynomial” (MCP) formula (Table 7), 
named “ocean chlorophyll 2” (OC2), yielded very good statis- 

tical results when tuned to the SeaBAM data (R2 = 0.918: 
RMS = 0.172 (Table 8)). Algorithm tuning involved determi- 
nation of MCP coefficients using iterative minimization rou- 
tines (IDL, Research System Incorporated) to achieve a slope 
of 1.000 intercept of 0.000, minimum RMS of q-q, and maxi- 
mum R’ between model and observed chlorophyll data. 

The agreement between the OC2 model and the in situ data 
throughout the range of C is excellent. and the relative fre- 
quency distributions of model and in situ C are highly congru- 

ent (Figure 5). The OC2 model captures the inherent sigmoid 
relationship between in situ band ratio and C, evident in semi- 

analytic models such as Gordon et al. [1988] and Morel [1988] 
(Figure 6). Our empirical fit (OC2) suggests that the sigmoid 
relationship is asymmetric, with steeper curvature at low C 
than at high C concentrations (but more observations with C 
above 20 Fg L-’ are required to confirm this). At low C the 
OC2 asymptotically approaches the expected clear water value 
(-6.6, Table 9) for the Rrs490iRrs555 radiance ratio. 

7.3.2. Ocean chlorophyll 4 (OC4), maximum band ratio 
algorithm. In the algorithm evaluation the global processing 
switching (GPs) algorithm yielded one of the highest coeffi- 
cients of determination (R2 = 0.927) between in situ and 

Table 9. Clear Water Values for Band Ratios With Rrs555 
in Denominator As Predicted by Model Using 6,/a + b, 
Formulation and Model Based on b,/a Relationship (With 
a, Values From Pope and Fty [1997] and b,, From Morel 
[1974] 

Rrs Band MCP 
Ratio Rrs = f(b,/(a + bh)) Rrs = f(b,/a) Algorithm 

4121555 27.61 47.03 28.52 
4431555 16.53 21.78 11.91 
4901555 6.13 6.66 6.80 
5101555 2.52 2.58 3.12 
5201555 1.87 1.89 2.42 

Clear water values predicted by the MCP equations derived from the 
SeaBAM data set (Table 7) are also indicated. 
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model. The GPs achieves this by switching from a 4431550 to a 

520/550 band ratio, thereby avoiding the relatively lower and 
noisier 44315.55 ratios when C exceeds -1.5 pg L-‘. The GPs 
algorithm follows the well-known shift of the maximum of Rrs 
spectra toward higher wavelengths with increasing C. The 
strategy behind the GPs is sound and insightful, but the switch- 
ing between power equations leads to the artifacts described 
above. 

With this in mind, a strategy was devised to maximize model 
precision over the entire chlorophyll concentration range. The 
functional form of this algorithm, named ocean chlorophyll 4 
(OC4), is a modified cubic polynomial relating a band ratio to 
C (Table 7). The significant departure from previous band 
ratio algorithms is that the band ratio is determined by which- 
ever ratio, Rrs443/Rrs555, or Rrs490iRrs555, or RrsSlO/ 

Rrs555, is greatest. Thus the OC4 maximum band ratio (MBR) 
model uses three-band ratios but only a single set of coeffi- 
cients in a single MCP equation. Similar MBR models for 

three-band combinations are shown in Table 7. 
After tuning to the SeaBAM data set, the OC4 model yields 

an R2 of 0.932 and RMS of 0.156 (Figure 5, Table 8). Of the 
three-band ratios considered, Rrs443iRrs555 was maximal 
from lowest C to values of -0.3 pg L-‘; Rrs490iRrs555 gener- 
ally dominated between 0.3 and -1.5 pg L-‘; and RrsSlO/ 

1c 

.P 

2 
u 

5 
m 

1 

h 0 Rrs510/Rrs555 

RL + Rre490/Rrs555 

10 0 Ars443/Rrs555 

0.01 0.1 

100 

2‘ 90 

5 2- 80 

p! 70 
LL 
$ 60 
.- 
4 50 

Cc 

2 

40 

30 

z 20 

5 10 

0.01 0.1 

1 10 100 

(n=654) 

- Rrs490/ 
RE555 
(n=145) 

Figure 7. Ocean chlorophyll 4 algorithm. (top) In situ band 
ratio versus C. OC4 model is represented by curved line. The 
in situ data are represented by symbols indicating dominant 
band ratio. (bottom) Cumulative relative frequency distribu- 
tion of maximum band ratios showing regions of dominance 
overlap between Rrs443 and Rrs490 and between Rrs490 and 
Rrs510 (vertical lines at 0.3 and 1.5 pg L- ‘, respectively). 
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Figure 8. Comparisons between OC4 and OC2. Quantile- 
quantile plot using simulated radiance ratios with random 
noise added. 

Rrs555 dominated when C exceeded -1.5 pg L-’ (Figure 7 
(top)). Note that the ranges of dominant band ratios overlap by 
-lo-30%, so there is a smooth transition from Rrs443iRrs555 
to Rrs490iRrs555 to Rrs510iRrs555 with decreasing band ratio 
(Figure 7 (bottom)). This overlap is a desirable property be- 
cause it implies that discontinuities in frequency distributions 
of C estimated with OC4 are unlikely. 

Possible discontinuities in the OC4 model were investigated 

by subjecting OC4 to a large, continuously varying population 
of simulated radiance ratios with random noise added. To 
simulate all band ratios involved in the OC4 model, a MCP 
equation was derived for each (Table 7), similar to the OC2 
model. By inverting these equations it was then possible to 
generate values for all radiance ratios for any given chlorophyll 
concentration. Random noise was introduced as a function of 
C concentration and wavelength [An& and Morel, 19911 so 
that several realistic band ratio combinations could be gener- 
ated at each C concentration. OC2 served as a reference since 
it does not generate any discontinuities for C between 0.001 
and 100 wg L-l. If discontinuities were present, we would 
expect them to appear near C values of 0.3 pg L-’ and 1.5 pg 
L-‘, the general regions where dominant band ratios shift (Fig- 
ure 7 (bottom)). The q-q comparison shown in Figure 8 indi- 
cates that no discontinuities were observed. While further tests 
are needed, these results indicate that discontinuities do not 
result from maximum band ratio models such as OC4 when 
ample overlap exists between adjacent dominant band ratios, 
as is the case for the SeaWiFS bands. 

This maximum band ratio model is a new approach in em- 
pirical ocean color algorithms. It has the potential advantage of 
maintaining the highest possible satellite sensor signal: noise 
reflectance ratio over a broad range of C concentrations. This 
aspect is important for passive ocean color sensors aboard 
satellites since normalized water-leaving radiances retrieved 
for the 443 nm band, after atmospheric correction, may be 
quite low or below the sensor detection threshold in chloro- 
phyll-rich coastal water or offshore phytoplankton blooms 
[Gordon, 19871. The MBR model may also be a useful ap- 
proach with sensors having many radiance bands (e.g., MODIS 
or hyperspectral data). MBR models such as OC4 might also 
be useful to define operationally three ocean realms with re- 
spect to trophic status: oligotrophic (CO.3 pg L-l), mesotrophic 
(0.3-1.5 pg L-‘), and eutrophic (>1.5 Fg L-‘), depending on 
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Figure 9. Ocean chlorophyll 3e algorithm. Cumulative rela- 
tive frequency distribution of maximum band ratios showing 
regions of dominance overlap between Rrs443 and Rrs520 
(vertical line at 0.8 pg L-l). 

whether radiances in the 443, 490, or 510 nm bands dominate. 
The scheme parallels that described by Antoine et al. [1996] in 
a study based on CZCS data. 

7.4. Comparisons Between Contemporary and Historical 
Ocean Color Data 

There is keen interest in the ocean color community in 
assessing long-term (decadal) changes in phytoplankton bio- 
mass, and primary productivity in the world oceans, and par- 
ticular interest in investigating the potential influences of cli- 
mate change on the magnitude or redistribution of oceanic 
productivity. The CZCS mission, from 1978 to 1986 [Yoder et 
al., 1988; Hooker et al., 1992; McClain, 19931, established a 
baseline which may be compared with time series developing 
or anticipated from contemporary ocean color sensors such as 
SeaWiFS, OCTS, and MODIS. The comparability between 
ocean color products embraces various aspects such as sensor 
characteristics and the way data should be processed and at- 
mospherically corrected. Accurate comparisons also require 
that similar products be compared (i.e., chlorophyll a or [C + 
P]). The primary CZCS product was [C + P], defined as the 

sum of chlorophyll a + phaeophytin a as measured by the 
fluorometric method. However, since fluorometric phaeophy- 
tin determinations are often contaminated by the presence of 
other forms of chlorophyll [Lorenzen and Jefiey, 1980; Trees et 
al., 1985; Vemet and Lorenzen, 19871, the definition of [C + P] 
is confounded and imprecise. Also, improvements in HPLC 
technique and new equipment and methods for fluorometric 
measurements of chlorophyll a [e.g., Welschmqer, 19941 will 
make it increasingly difficult to compare new “sea truth” chlo- 
rophyll data with earlier fluorometric [C + P] estimates used as 
sea truth for the CZCS mission. For these reasons it appears 
preferable that comparisons between past and new ocean color 
data be based on chlorophyll u This implies a need to repro- 
cess the CZCS data using a suitable chlorophyll algorithm. 

Because the SeaBAM data set was designed primarily for 
SeaWiFS, its radiometric composition is less suited for devel- 
oping a CZCS chlorophyll algorithm. The only CZCS chloro- 
phyll algorithm which can be derived without radiometric ad- 
justments of the SeaBAM data must use 443 and 555 nm 
(accepting the practical equivalence of Rrs550 and Rrs555). 
CZCS algorithms employing radiance data from 443, 520, and 
550 nm bands using a maximum band ratio approach, such as 

used in OC4, might be suitable for CZCS reprocessing. For 
instance, the ocean chlorophyll 3e (OC3e), a three-band algo- 

rithm (Table 7), gives better agreement with in situ C than 

OC2b (Table 8). Even though Rrs490 is not used in OC3e, 
there appears to be sufficient overlap (-10%) to ensure a 

smooth transition between dominance by Rrs443/Rrs555 and 

Rrs520iRrs555 at low and high concentrations of C, respec- 

tively (Figure 9). These results, although promising, must be 

considered preliminary because in 85 of the 157 instances 

where Rrs520/Rrs555 was the dominant band ratio (Figure 9), 
Rrs520 data were estimated from the adjacent Rrs510 band, as 

described in section 3.4.2. 

8. Conclusion 

The major focus of this paper was the identification of an 
algorithm which would allow estimates of in situ C concentra- 

tions from SeaWiFS data with the highest possible accuracy 

and precision over a wide range of bio-optical conditions. 

While several SeaWiFS-compatible algorithms performed 

well, the SeaBAM participants [Firestone and Hooker, 19981 

recommended OC2 as the at-launch SeaWiFS operational 

chlorophyll a algorithm for several reasons. The potential ro- 

bustness of an algorithm tuned to a large and quality- 

controlled data set is a major reason. The simple and reversible 
functional form used by OC2, as well as its statistical and 
graphical results, were considered superior to other formula- 

tions evaluated. Its use of the 490 nm band allows reliable 

chlorophyll estimates over a wide range of concentrations; 

Statistical results using the 490/555 band ratio were superior to 

any other two-band combination (Table 8) as was also re- 

ported by Aiken et al. [1995]. Despite their evident benefits at 

low and midconcentrations, two-band algorithms based on the 

443/555 ratio were rejected because they gave less precise 

estimates at high chlorophyll concentrations and because there 

existed uncertainties associated with atmospheric corrections 

of sensor radiances at low wavelengths [e.g., Gordon, 19871. 
While the 443 nm band is nearer the chlorophyll absorption 
peak than the 490 band and should therefore be more respon- 

sive to variation in chlorophyll a concentration, the 443 band is 

also more likely to be influenced by CDOM absorption which 
decreases exponentially with increasing wavelength [Bticaud et 
al., 1981; Roe&r et al., 19891. It must also be kept in mind that 

the 490 nm band works well in band ratio algorithms such as 

OC2 because of the usually strong correlation between chlo- 

rophyll a, accessory pigments such as carotenoids, and other 

covarying substances influencing absorption and reflectance at 

490 nm [Yentsch, 1960; Aiken et al., 19951. This covariance of 
in-water optical properties influencing Rrs at 443 and 490 nm 

is also implied by their high correlation (R2 = 0.92, log- 
transformed data) in the SeaBAM data. Reduced accuracy 
should therefore be expected from OC2 when phytoplankton 
pigment composition, pigment-packaging, or bio-optical con- 

ditions deviate markedly from those embodied in SeaBAM 

data [e.g., Kahn* and Mitchell, 1998b]. Additional drawbacks in 
using OC2 are that it must be validated using new independent 

observations and that it, or any algorithm derived from the 

SeaBAM, will inherit the limitations of the SeaBAM data. 
While results for OC4 were superior to OC2, OC4 is not so 
suitable as the initial operational algorithm for SeaWiFS be- 

cause its use would require accurate atmospheric corrections 

and on-orbit calibrations in four bands (instead of two), and 
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this can be assessed only after the collection of sufficient data 
to validate and fine tune the sensor calibrations. 

The SeaBAM data, collected in many oceanic provinces, are 
reasonably coherent, implying that OC2, derived from these 
data, should perform reasonably well for tropical, subtropical, 
and temperate waters. It is unlikely, however, that any single 
equation would equitably render all bio-optical diversity 
present in the world ocean. For example, while still not well 
understood, evidence is accumulating that polar waters have 
bio-optical properties which differ from lower-latitude oceanic 
Case I waters [Mitchell and Holm-Hansen, 1991; Mitchell, 1992; 
Cota, 19971. Moreover, CDOM, “package effects” [Kirk, 1975; 
Morel and Bricaud, 19811 and phytoplankton species composi- 
tion are important factors ruling light-related phenomena in 
Antarctica [Mitchell and Holm-Hansen, 1991; DiTullio and 
Smith, 1996; Claustre et al., 19971. In the context of results 
presented by Mitchell [1992], any algorithm derived from low 
and midlatitude Oceanic Case I data might be expected to 
undert timate C concentration in Antarctic waters. On the 
basis of some recent optical measurements collected in the 
Ross Sea, the converse trend may also be observed [Schieber, 
19981. Coccolithophorid blooms [Balch et al., 1991; Ackleson et 
al., 1994; Brown and Yoder, 19941 and perhaps cyanobacteria 

blooms, are other examples of situations where algorithms 
derived from Case I waters dominated by other species are 
likely to fail. Case II waters present additional complications 
and challenges as they can be of different types depending on 
whether they are dominated by CDOM, nonchlorophyllous 
particles, or a variable mix of both [Carder et al., 1989; see also 
Siegel and Michaels, 1996 about CDOM in Case I waters]. 
Specific algorithms or different parameterizations will be re- 
quired to handle these kinds of situations or regions. 

Algorithms designed for use at global scales are likely to be 
less accurate at local and regional scales than those developed 
for particular regions or bio-optical conditions, and vice versa. 
For local and regional studies the use of a regionally parame- 
terized algorithm makes sense, but for the purpose of produc- 

ing chlorophyll maps at global scale, it would be very difficult 
to use a patchwork of regional algorithms because of consis- 
tency and transition issues between algorithms, and the funda- 
mental lack of data in many regions. The calibration and val- 
idation activities planned for SeaWiFS will allow extensive 
testing of OC2 and other algorithms and will determine 

whether algorithm modifications or adjustments are required 
to achieve the most reliable global estimates of phytoplankton 
biomass. 

Notation 

absorption coefficient, m-‘. 

absorption coefficient for particulate and 
dissolved matter, m-‘. 
absorption coefficient for CDOM, m-i. 
absorption coefficient for phytoplankton, m-l. 
absorption coefficient of pure seawater, m-‘. 
backscattering coefficient, m-i. 
backscattering coefficient for particles, m-‘. 
backscattering coefficient of pure seawater, rn-‘. 
chlorophyll a concentration, pg L-‘. 
downwelling irradiance at depth z and 
wavelength A, PW cm-’ nm-‘. 

mean extraterrestrial solar irradiance, PW cm-’ 
nrn-‘. 

L,(z, A) upwelling radiance at depth z and wavelength A, 

mW cm-’ nm-l sr-l. 

L,(A) water-leaving radiance, FW cmp2 nm-’ sr-‘. 
Lwn(A) normalized water-leaving radiance, mW crne2 

nrn-’ sr-‘. 

P phaeophytin concentration, pg L-l. 

Rrs remote sensing reflectance, sr-l. 

Cruises and field studies 

AMT 
BBOP 

CalCOFI 

EQPAC 
JGOFS 
MOCE 
NABE 

WOCE 

Atlantic meridional transect. 
Bermuda BioOptics Project. 
California Cooperative Oceanic Fisheries 
Investigation. 
equatorial Pacific. 

Joint Global Ocean Flux Study. 
Marine Optical Characterization Experiment. 
North Atlantic Bloom Experiment. 
World Ocean Circulation Experiment. 

Satellite ocean color sensors 

czcs 
MERIS 
MODIS 

OCTS 
POLDER 

SeaWiFS 

coastal zone color scanner. 
medium-resolution imaging spectrometer. 
moderate-resolution imaging spectroradiometer. 

ocean color temperature sensor. 

Polarization and Directionality of Earth 

Reflectances. 
Sea-viewing Wide Field-of-view Sensor. 
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NOTE : 

The coefficients in the operational SeaWiFS chl-a algorithm, Ocean Chlorophyll 2 

(OC2), have been recently updated to allow better estimations at concentrations above 1 mg 

rnm3. The formulation of the algorithm (a modified cubic polynomial) remains unchanged. 

The original coefficients were based on 919 in situ measurements of R, and chlorophyll in 

the SeaRAM data set. The new coefficients were derived by fitting CC2 to an extended 

version of the SeaRAM data set (n = 1174). The updated OC2 algorithm yields very similar 

results to those obtained using the earlier version described in this paper, from the lowest 

concentrations to -1.5 mg me3, while in more eutrophic waters, the updated algorithm 

generates lower concentrations than the original equation. More details about this and other 

changes in SeaWiFS data processing (announced in August 1998) will be available in an 

upcoming volume of the SeaWiFS Postlaunch Technical Report Series. 

The updated OC2 algorithm is as follows : 

[&l-a] = 
0.2974-2.2429*R+0.8358*R2 -0.0077*R3 

10 -0.0929 

with R = log,,(RJ490)&,(555)). 


